Material Data Sheet



# EOS Maraging-Steel MS1

Ultra high strength tooling grade maraging steel

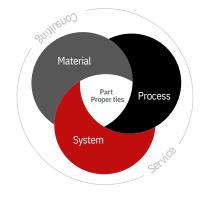
ECOPARTS
ADDITIVE METAL SOLUTIONS

## EOS MaragingSteel MS1

EOS MaragingSteel MS1 is an ultra high strength tooling grade maraging steel. Its excellent properties are enabled by forming intermetallic phases and precipitates in heat treatment. It's nickel, cobalt, molybdenum and titanium alloying results in an excellent material for additive manufacturing and provide low distortion and balanced properties. The properties enable successful use in diverse applications including injection molding and cold and hot working.

#### **Main Characteristics:**

- → Ultra high strength and hardness
- → Properties adjustable with
- → different heat treatment Low distortions
- → Good machinability


#### **Typical Applications:**

- → Plastic injection molding
- → Extrusion tools
- → Hot pressing tools

#### The EOS Quality Triangle

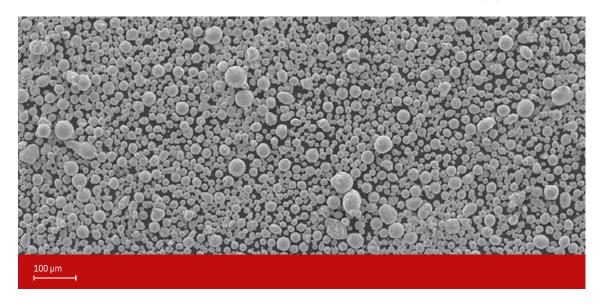
EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process – together simply described as the Quality Triangle. EOS focuses on delivering reproducible part properties for the customer.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.



## **Powder Properties**

The chemicalal composition of EOS MaragingSteel MS1 corresponds to AMS6514 18Ni300 maraging steel standard.

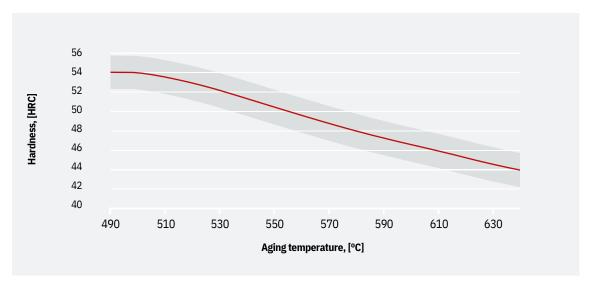

| D 1    |          | composition   |       |
|--------|----------|---------------|-------|
| Powder | cnemical | i composition | IWT90 |

| Element | Min.  | Max.    |  |  |
|---------|-------|---------|--|--|
| Fe      | Bala  | Balance |  |  |
| Ni      | 17.00 | 19.00   |  |  |
| Со      | 8.50  | 9.50    |  |  |
| Мо      | 4.50  | 5.20    |  |  |
| Ti      | 0.60  | 0.80    |  |  |
| Al      | 0.05  | 0.15    |  |  |

#### Powder particle size

| Generic particle size |            |
|-----------------------|------------|
| distribution          | 15 – 65 μm |
|                       |            |

SEM picture of EOS MaragingSteel MS1 powder.




#### **Heat Treatment**

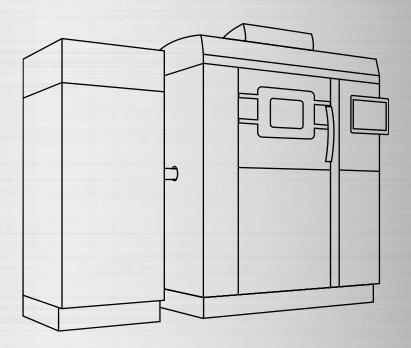
EOS MaragingSteel can be heat treated to match various needs of different applications. The two step heat treatment can be performed under vacuum or inert gas atmosphere. First step is solution annealing to minimize amount of austenite in the martensitic matrix. The needed hardness and strength is achieved through aging treatment where hardening takes place through forming of intermetallic phases and precipitates.

Solution annealing: 2 h at 940 °C ( $\pm 10$  °C) measured from the part followed by rapid air cooling to room tempera- ture (below 32 °C). Cooling rate 5-60 °C/min. Reaching room temperature before starting aging treatment is required to achieve desired microstructure.

Aging: For peak hardness of 54 HRC age 6 h at 490 °C (±10 °C) measured from the part followed by air cooling. Mechanical properties presented in this document achieved through this aging procedure. For lower hard-ness and strength choose aging temperature according to the graph below



Rockwell C hardness according to ISO 6508


#### **Coefficient of Thermal Expansion ASTM E228**

| Temperature | 25-100°C     | 25-200°C    | 25-300 °C   | 25-400 °C   |
|-------------|--------------|-------------|-------------|-------------|
| СТЕ         | 10.6 *10-6/K | 10.9*10-6/K | 11.2*10-6/K | 11.5*10-6/K |

#### **Modulus of Elasticity ASTM E 132-04**

| State                       | Heat treated |
|-----------------------------|--------------|
| Modulus of elasticity [GPa] | 190          |





## EOS MaragingSteel MS1 for EOS M 290 | 40 μm

Process Information
Chemical and Physical Part Properties
Mechanical Properties
Additional Data

## EOS MaragingSteel MS1 for EOS M 290 | 40 $\mu m$

### **Process Information**

This process product is optimized for building high quality parts with EOS M 290 system using EOS MaragingSteel MS1.

| System set-up        | EOS M 290               |  |
|----------------------|-------------------------|--|
| EOSPAR name          | MS1_040_PerformanceM291 |  |
| Also compatible with | EOS M290-2 400W         |  |
| Powder part no.      | 9 011- 0 016            |  |
| Recoater blade       | Ceramic blade           |  |
| Nozzle               | Grid nozzle             |  |
| Inert gas            | Nitrogen                |  |
| Sieve                | 63 μm                   |  |
|                      |                         |  |

| Additional information              |           |
|-------------------------------------|-----------|
| Layer thickness                     | 40 μm     |
| Typical dimensional change after HT | +0.1 %    |
| Volume rate                         | 4.2 mm3/s |

## Chemical and Physical Properties of Parts1



Chemical composition of printed parts matches the chemistry of EOS MaragingSteel MS1 powder.

#### Micrograph of polished surface



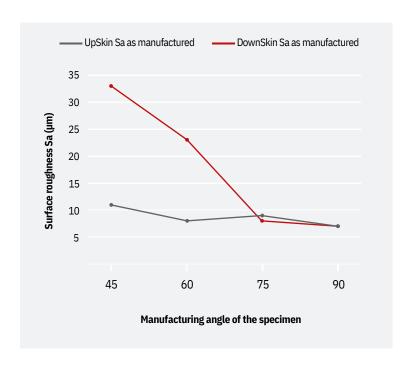
| Defects                   | Result | Number of samples |
|---------------------------|--------|-------------------|
| Average defect percentage | 0.04 % | 10                |

### **Mechanical Properties1**



#### Mechanical properties ISO6892-1

| Heat Treated | Yield strength<br>Rp0.2 [MPa] | Tensile strength Rm [MPa] | Elongation at break |
|--------------|-------------------------------|---------------------------|---------------------|
| Ver tic al   | 201                           | 210                       | 4                   |
| Horizontal   | 0                             | 0                         | 4.5                 |
|              | 202                           | 208                       |                     |
|              | 0                             | 5                         |                     |

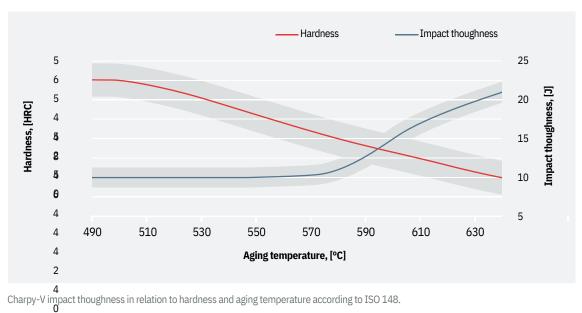



T95: Tolerance intervals provide lower bounds where 95 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferable to other systems.

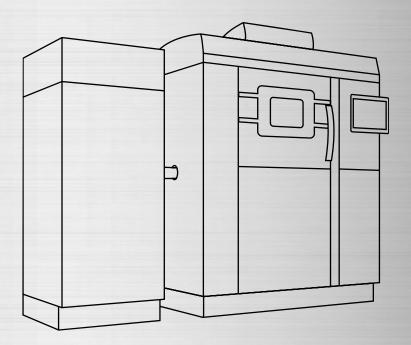
#### **Additional Data1**



#### **Surface Roughness**




#### **Fatigue Strength**


| State                  | Heat treated |  |
|------------------------|--------------|--|
| Fatigue Strength [MPa] | 650          |  |

Fatigue strength determines a stress level where specimen fails at a defined number of stress cycles. Fatigue strength was estimated statistically according to ISO 12107. Testing was performed according to ASTM E466. Fatigue results typically show large deviations due to the nature of the fatigue process.

#### **Impact Thoughness**







## EOS MaragingSteel MS1 for EOS M 290 | 50 μm

Process Information
Chemical and Physical Part Properties
Mechanical Properties
Additional Data

## EOS MaragingSteel MS1 for EOS M 290 | 50 $\mu m$

### **Process Information**

This process product is optimized for fast production of MS1 parts with EOS M 290.

| EOS M 290         |  |  |
|-------------------|--|--|
| MS1_050_SpeedM291 |  |  |
| EOS M290-2 400W   |  |  |
| 9 011- 0 016      |  |  |
| Ceramic blade     |  |  |
| Grid nozzle       |  |  |
| Nitrogen          |  |  |
| 63 μm             |  |  |
|                   |  |  |

| Additional information              |           |
|-------------------------------------|-----------|
| Layer thickness                     | 50 μm     |
| Typical dimensional change after HT | +0.1 %    |
| Volume rate                         | 5.5 mm3/s |

## Chemical and Physical Properties of Parts1



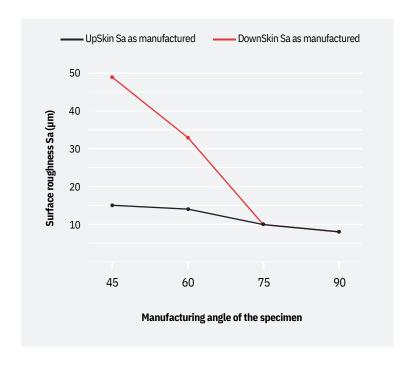
Chemical composition of printed parts matches the chemistry of EOS MaragingSteel MS1 powder.

#### Micrograph of polished surface



| Defects                   | Result  |  |
|---------------------------|---------|--|
| Average defect percentage | < 0.1 % |  |

## Mechanical Properties1




Mechanical properties ISO6892-1

| Heat Treated | <b>Yield strength</b><br>Rp0.2 [MPa] | <b>Tensile strength</b><br>Rm [MPa] | Elongation at break<br>A [%] |
|--------------|--------------------------------------|-------------------------------------|------------------------------|
| Ver tic al   | 2000                                 | 2100                                | 2                            |
| Horizontal   | 2030                                 | 2100                                | 3                            |

#### **Additional Data1**

#### **Surface Roughness**





## ECOPARTS ADDITIVE METAL SOLUTIONS

ECOPARTS AG, ZÜRICHSTRASSE 62, 8340 HINWIL +41 55 260 18 00, INFO@ECOPARTS.CH WWW.ECOPARTS.CH