Material Data Sheet

EOS Titanium Ti64 Grade 5

Low weight, high strength & excellent corrosion resistance

EOS Titanium Ti64 Grade 5

EOS Titanium Ti64 Grade 5 is a Ti6Al4V alloy, which is well-known for having excellent mechanical properties: low density with high strength and excellent corrosion resistance. The alloy has low weight compared to superalloys and steels and higher fatigue resistance compared to other lightweight alloys. EOS Titanium Ti64 Grade 5 is a titanium alloy powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

Parts built with EOS Titanium Ti64 Grade 5 powder can be machined, shot-peened and polished in as manufactured and heat treated states. Due to the layerwise building method, the parts have a certain anisotropy. Heat treatment is recommended to reduce internal stresses and increase ductility.

EOS Titanium Ti64 Grade 5 powder can be used on the EOS M 290 with a 40 μm and 80 μm process and on the EOS M 400-4 with an 80 μm process.

Main Characteristics:

Typical Applications:

Low weight combined with high strength Excellent corrosion resistance High fatigue resistance compared to other lightweight alloys The parts fulfill chemical requirements for Grade 5 alloy Aerospace components Automotive components Other industrial applications where low weight in combination with high strength are re quire d

The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process – together simply described as the Quality Triangle. EOS focuses on delivering reproducible part properties for the customer.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

EOS Titanium Ti64 Grade 5 powder is classified as Grade 5 titanium alloy according to ASTM B348. The chemical composition is in compliance with standards ISO5832-3, ASTM F1472, ASTM F2924, and ASTM F3302.

Powder chemical composition (wt%)				
Element	Min.	Max.		
Ti	Bal	ance		
AI	5.50	6.75		
V	3.50	4.50		
0	-	0.20		
Ν	-	0.05		
С	-	0.08		
Н	-	0.015		
Fe	-	0.30		
Y	-	0.005		
Other elements, each	-	0.10		
Other elements, total	-	0.40		

Powder particle size

Generic particle size distribution	20 – 80 µm

SEM picture of EOS Titanium Ti64 Grade 5 powder.

EOS Titanium Ti64 Grade 5 for EOS M 290 | 40 μm

Process Information Heat Treatment Physical Part Properties Mechanical Properties Additional Data

V1.0, CR617, 2019-02

EOS Titanium Ti64 Grade 5 for EOS M 290 | 40 μm High Fatigue Strength without HIP

This process product was developed specifically for the production of parts with high fatigue strength without the need for Hot Isostatic Pressing (HIP).

Main characteristics:

Robust production of parts in small series and series production Improved fatigue strength compared to previous generation EOS Titanium Ti64 products

Possibility for shortened overall production time by avoiding HIP as post-process treatment step

Process Information

System set-up	EOS M 290	
EOS ParameterSet	M 290 Ti64 Grade 5 040 V1	
EOSPAR name	Ti64Grade5_040_HiPerM291_100	
Software requirements	EOSPRINT 2.5 or newer EOSYSTEM 2.8 or newer	
Powder part no.	9011-0045	
Recoater blade	EOS HSS blade	
Nozzle	EOS grid nozzle	
Inert gas	Argon	
Sieve	90 µm	
Additional information		
Layer thickness	40 µm	
Min. wall thickness	Approx. 0.4 mm	
Volume rate	6.2 mm3/s	

Chemical and Physical Properties of Parts1

The chemical composition of parts is in compliance with standards ISO5832-3, ASTM F1472, ASTM F2924, and ASTM F3302. Composition complies with EOS Titanium Ti64 Grade 5 p owd er.

Heat treated microstructure. Etched according to ASTM E407 modified recipe #190.

The areal defect percentage was determined from cross-cuts of the built parts using optical microscope fitted with a camera and analysis software. The analysis was carried out for a sample area of 15 x 15 mm. The defects were detected and analyzed with an image capture/analysis software with an automatic histogram based filtering procedure on monochrome images. The density of the built specimen was measured according to ISO3369.

Defects	Result	Number of samples
Average defect percentage	0.01 %	30
Density, ISO3369	Result	Number of samples
Average density	≥ 4.4 g/cm3	10

Heat Treatment

As manufactured microstructure for additively manufactured Ti64 consists of fully acicular alpha prime (α') phase. Standard heat treatments for titanium do not necessarily produce desired microstructures due to this different starting microstructure.

Heat treatment is recommended to relieve stresses and to increase ductility. Use of vacuum furnace is highly recommended to avoid the formation of alpha case on the surface of the parts.

Heat Treatment Description:

120 min (± 30 min) at 800 °C (± 10 °C) measured from the part in vacuum (1.3 x 10-3 -1.3 x 10-5 mbar) followed by cooling under vacuum or argon quenching. Material mechanical properties are relatively insensitive to changes in heating and cooling rates, but longer treatment times may result in decreased strength and increased elongation.

Parts heat treated according to the recommended heat treatment have a microstructure consisting of fine alpha + beta ($\alpha + \beta$) phase.

Mechanical Properties in Heat Treated State1

Mechanical properties ISO6	892-1				
	Yield strength Rp0.2 [MPa]	Tensile strength Rm [MPa]	Elongation at break A [%]	Reduction of area Z [%]	Number of samples
Ver tic al	1,010	1,080	15	≥ 25	84
Horizontal	970	1,080	14	≥ 25	72

Additional Data1

Fatigue Strength

Fatigue strength determines a stress level where specimen fails at a defined number of stress cycles [ISO 12107]. Fatigue strength was estimated statistically according to ISO 12107. Testing was done according to ASTM E466. Fatigue results typically show large deviations due to the nature of the fatigue process [ISO 12107].

Fatigue strength at 1 x 107 cycles in heat treated state

Fatigue strength, MPa 595 MPa

Surface Roughness

The surface quality was characterized by optical measurement method from down-facing surfaces according to internal procedure. The 90 degree angle corresponds to vertical surface.

Coefficient of Thermal Expansion ASTM E228

Temperature 25 – 100 °C		25 – 200 °C	25 – 300 °C	
CTE	9.0 *10-6/K	9.4 *10-6/K	9.7 *10-6/K	

EOS Titanium Ti64 Grade 5 for EOS M 290 | 80 μm

Process Information Physical Part Properties

EOS Titanium Ti64 Grade 5 for EOS M 290 | 80 µm Process Information

This process product is optimized for faster production of parts with properties according to ASTM F1472. For most demanding applications, Hot Isostatic Pressing (HIP) is recommended to optimize high cycle fatigue properties

Main Characteristics:

- Parameter set for fast and cost efficient production of Ti64 parts in small series or serial production
- → 15 30 % faster than EOS Ti64 Speed (60 µm) parameter set
- \rightarrow 50 % faster than EOS Ti64 Grade 5 HiPer (40 µm) parameter set
- → Material fulfills ASTM F2924 mechanical requirements in heat treated state. For fatigue critical applications, HIP is recommended as post-treatment .

System set-up	EOS M 290
EOS ParameterSet	M 290 Ti64 Grade 5 080 V1
EOSPAR name	Ti64Grade5_080_CoreM291_100
Software requirements	EOSPRINT 2.5 or newer EOSYSTEM 2.8 or newer
Powder part no.	9011-0045
Recoater blade	EOS HSS blade
Nozzle	EOS grid nozzle
Inert gas	Argon
Sieve	aq hu

Additional information

Layer thickness	80 µm		
Volume rate	12.0 mm ³ /s		

Chemical and Physical Properties of Parts1

The chemical composition of parts is in compliance with standards ISO5832-3, ASTM F1472, ASTM F2924, and ASTM F3302. Composition complies with EOS Titanium Ti64 Grade 5 p owd er.

Defects	Result
Average defect percentage	<0.1 %*
Surface roughness Ra	Result
Vertical	9 µm

* Defect% varies with platform position.

Typical properties					
	Yield strength Rp0.2 [MPa]	Tensile strength Rm [MPa]	Elongation at break A [%]	Reduction of area Z [%]	Fatigue strength N = 9
Heat treated horizontal	1,000	1,100	15	> 25	
Heat treated vertical	1,020	1 ,11 0	15**	> 25**	-
HIP horizontal	900	1, 010	16	> 25	(75 MD
HIP vertical	920	1,020	16	> 25	675 MPa

High cycle fatigue strength was estimated statistically according to ISO 12107.

Testing was done according to ASTM E466 with run-out limit 107 cycles.

** Mean values above the standard limit, some outliers below the limit.

IHR INDUSTRIEPARTNER FÜR ADDITIV GEFERTIGTE BAUTEILE

Wir «drucken» (3D Druck von Metall) Ihre Bauteile und liefern Ihnen diese inklusive der kompletten mechanischen Nacharbeit. Unser Fertigungsprozess garantiert eine hohe Qualität und Reproduzierbarkeit. Mit unserer Erfahrung unterstützen und beraten wir Sie gerne in der Konstruktion für den additiven Fertigungsprozess.

ECOPARTS ADDITIVE METAL SOLUTIONS

ECOPARTS AG, ZÜRICHSTRASSE 62, 8340 HINWIL +41 55 260 18 00, INFO@ECOPARTS.CH WWW.ECOPARTS.CH