Metal Premium Solutions

# ADDITIVE METAL SOLUTIONS

# EOS NickelAlloy IN718 Material Data Sheet



# EOS NickelAlloy IN718 High Temperature Strength and Corrosion Resistance

EOS NickelAlloy IN718 is a precipitation-hardening nickel-chromium alloy that is characterized by having good tensile, fatigue, creep and rupture strength at temperatures up to 700 °C (1 290 °F). Parts built from EOS NickelAlloy IN718 can be easily post-hardened by precipitation-hardening heat treatments.

EOS NickelAlloy IN718 is a nickel alloy powder intended for manufacturing parts on EOS metal systems with EOS DMLS processes.

#### **Main Characteristics:**

#### **Typical Applications:**

- → Good tensile, fatigue, creep and rupture strength at temperatures up to 700 °C (1 290 °F)
- Parts are easily precipitation hardened
- Parts can be machined, spark-eroded, welded, micro shot-peened, polished and coated in both as-built and age-hardened states
- → Gas turbine components
- Instrumentation parts
- Power industry parts
- Process industry parts

#### **The EOS Quality Triangle**

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process. The data resulting from each combination is assigned a Technology Readiness Level (TRL) which makes the expected performance and production capability of the solution transparent.

EOS incorporates these TRLs into the following two categories:

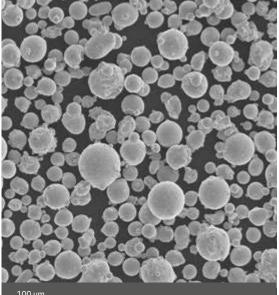
-Premium products (TRL 7-9): offer highly validated data, proven capability and reproducible part properties. -Core products (TRL 3 and 5): enable early customer access to newest technology still under development and are therefore less mature with less data.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.



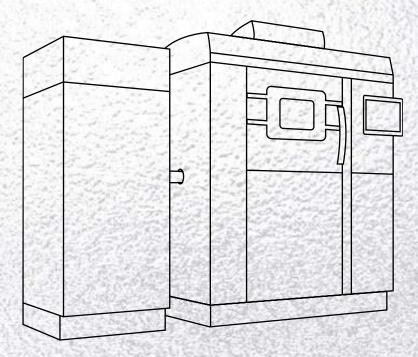
# **Powder Properties**

The chemical composition of EOS NickelAlloy IN718 is in compliance with UNS N07718, AMS 5662, AMS 5664, W.Nr 2.4668, DIN NiCr19Fe19NbMo3.


| Powder chemical composition (wt%) |       |         |  |
|-----------------------------------|-------|---------|--|
| Element                           | Min.  | Max.    |  |
| Fe                                |       | Rem.    |  |
| Ni                                | 50.00 | 55.00   |  |
| Cr                                | 17.00 | 21.00   |  |
| Nb                                | 4.75  | 5.50    |  |
| Мо                                | 2.80  | 3.30    |  |
| Ті                                | 0.65  | 1.15    |  |
| Al                                | 0.20  | 0.80    |  |
| Со                                | -     | 1.00    |  |
| Cu                                | -     | 0.30    |  |
| Si                                | -     | 0.35    |  |
| Mn                                | -     | 0.35    |  |
| Та                                | -     | 0.05    |  |
| С                                 | -     | 0.08    |  |
| S                                 | -     | 0.015   |  |
| Р                                 | -     | 0.015   |  |
| В                                 | -     | 0.006   |  |
| Pb                                | -     | 0.0005  |  |
| Se                                | -     | 0.0020  |  |
| Bi                                |       | 0.00003 |  |

#### Powder particle size

Generic particle size distribution


20-55 µm

SEM picture of EOS NickelAlloy IN718 powder.



100 µm





# EOS NickelAlloy IN718 for EOS M 290 | 40 μm

Process Information Heat Treatment Physical Part Properties Mechanical Properties Additional Data

### EOS NickelAlloy IN718 for EOS M 290 | 40 µm Process Information

| System set-up         | EOS M 290                                                              |
|-----------------------|------------------------------------------------------------------------|
| EOS material set      | IN718 Performance 2.0                                                  |
| EOSPAR name           | IN718_040_PerformanceM291_2x                                           |
| Software requirements | EOSPRINT 1.7 or newer, EOSPRINT 2.6<br>or newer, EOSYSTEM 2.9 or newer |
| Powder part no.       | 9011-0020                                                              |
| Recoater blade        | EOS HSS Blade                                                          |
| Nozzle                | EOS Grid Nozzle                                                        |
| <br>Inert gas         | Argon                                                                  |
| Sieve                 | <del>63 μm</del>                                                       |

#### Additional information

| Layer thickness     | 40 µm                  |
|---------------------|------------------------|
| Volume rate         | 4.2 mm <sup>3</sup> /s |
| Min. wall thickness | Typical 0.3 - 0.4 mm   |

#### **Heat Treatment**

Heat treatment procedure conform to Aerospace Material Specification AMS 2774 and AMS 5662. As manufactured microstructure for additively manufactured IN718 consists of gamma phase (γ). Heat treatment for IN718 is required to produce desired microstructure and part properties (gamma double prime precipitates, γ"). Heat treatment is also used to relieve stresses.

#### Step 1:

**Solution Annealing:** hold at 954 °C (1 750 °F ) for 1 hour per 25 mm (0.98 inch) of thickness, air (/argon) cool

#### Step 2:

**Ageing Treatment:** hold at 718 °C (1 325 °F ) 8 hours, furnace cool to 621 °C (1 150 °F ) and hold at 621 °C (1 150 °F ) for total precipitation time of 18 hours, air (/argon) cool



# Chemical and Physical Properties of Parts1



Heat treated microstructure. Etched according to ASTM E407-07.

| Defects                   | Result         | Number of samples |
|---------------------------|----------------|-------------------|
| Average defect percentage | 0.03 %         | 10                |
| Density, ISO3369          | Result         | Number of samples |
| Average density           | min 8.15 g/cm3 | NA                |



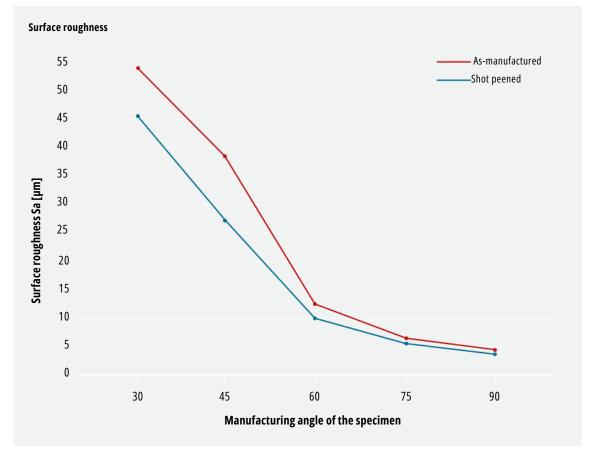
### **Mechanical Properties in Heat Treated State1**

Tensile properties heat treated

#### (acc. AMS 2774 and AMS 5662) **Yield strength Tensile strength Elongation at break** A Number of [%] samples Rm [MPa] Rp0.2 [MPa] 17 1 1 4 5 1 375 54 Vertical 1 2 4 0 1 505 12 26 Horizontal Hardness as per ISO 6508-1 Hardness as per DIN EN ISO 6506-1:2014 47 466 Hardness, HRC Hardness, HB 45 10 Number of samples Number of samples Vertical Horizontal AMS 5662 1 600 1 505 24 % 1 500 1 375 1 400 20 % 17 Strength [Mpa] Elongation [%] 1 300 16 % 1 276 MPa 1240 . 1 241 MPa 12 1 200 12 % 1 1 4 5 12 % 1 100 8 % 1034 MPa 6% 1 000 4 % Yield strength $[R_{p0,2}]$ Tensile strength [Rm] Elongation [A]

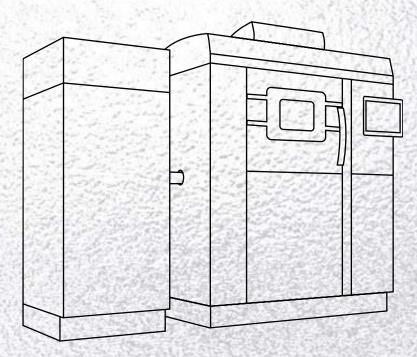
\* T90: Tolerance intervals provide upper and lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferrable to other systems.

| Tensile properties a | s manufactured                |                              |                           |                      |
|----------------------|-------------------------------|------------------------------|---------------------------|----------------------|
|                      | Yield strength<br>Rp0.2 [MPa] | Tensile strength<br>Rm [MPa] | Elongation at break A [%] | Number<br>of samples |
| Vertical             | 650                           | 970                          | 32                        | 41                   |
| Horizontal           | 800                           | 1 090                        | 25                        | 36                   |




#### **Coefficient of Thermal Expansion ASTM E228-17**

| Temperature | 25-100 °C   | 25-200 °C   | 25-300 °C   | 25-400 °C   | 25-500 °C   | 25-600 °C   | 25-700 °C   |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CTE         | 13.1*10-6/K | 13.7*10-6/K | 14.1*10-6/K | 14.4*10-6/K | 14.7*10-6/K | 15.0*10-6/K | 15.5*10-6/K |


#### **Surface Roughness**

| Horizontal surface        | As-manufactured Sa 4.5 µm | Shot Peened Sa 3.8 µm |
|---------------------------|---------------------------|-----------------------|
| Vertical and angled surfa | aces according to figure  |                       |



The surface quality was characterized by optical measurement method according to internal procedure. The 90 degree angle corresponds to vertical surface.





# EOS NickelAlloy IN718 for EOS M 290 | 40 μm HiPro

Process Information Heat Treatment Physical Part Properties Mechanical Properties Additional Data

### EOS NickelAlloy IN718 for EOS M 290 | 40 µm HiPro

#### **Process Information**

This process parameter includes two variations of the exposure set: the first one provides better productivity while the second one enables low angle buildability down to 20° at least1. The low angle buildability can be optimized further through the part geometry and the length of overhang.



| System set-up         | EOS M 290                                        |
|-----------------------|--------------------------------------------------|
| EOS material set      | IN718 40µm HiPro                                 |
| EOSPAR name           | IN718_040_080_HiProM291_1xx                      |
| Software requirements | EOSPRINT 2.11 or newer<br>EOSYSTEM 2.15 or newer |
| Powder part no.       | 9011-0020                                        |
| Recoater blade        | EOS HSS Blade                                    |
| Nozzle                | EOS Grid Nozzle                                  |
| Inert gas             | Argon                                            |
| Sieve                 | 63 µm                                            |

#### Additional information

| Layer thickness     | 40 µm                  |
|---------------------|------------------------|
| Volume rate         | 5.2 mm <sup>3</sup> /s |
| Min. wall thickness | Typical 0.3 - 0.4 mm   |

#### **Heat Treatment**

Heat treatment procedure conform to Aerospace Material Specification AMS 2774 and AMS 5662. As manufactured microstructure for additively manufactured IN718 consists of gamma phase (y). Heat treatment for IN718 is required to produce desired microstructure and part properties (gamma double prime precipitates, y"). Heat treatment is also used to relieve stresses.

#### Step 1:

Solution Annealing: hold at 954 °C (1 750 °F ) for 1 hour per 25 mm (0.98 inch) of thickness, air (/argon) cool

#### Step 2:

**Ageing Treatment:** hold at 718 °C (1 325 °F) 8 hours, furnace cool to 621 °C (1 150 °F) and hold at 621 °C (1 150 °F) for total precipitation time of 18 hours, air (/argon) cool

# **Chemical and Physical Properties of Parts1**



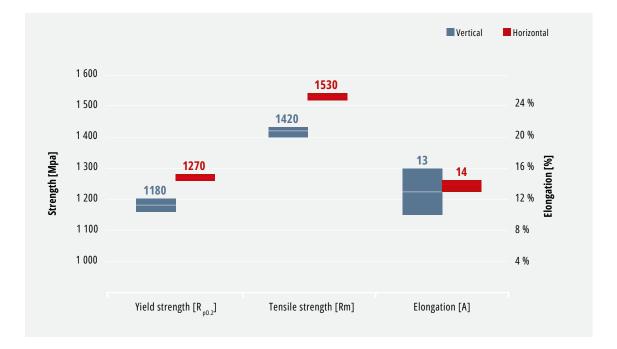


As manufactured microstructure. Etchant: Kalling's II

| Defects                   | Result         | Number of samples |
|---------------------------|----------------|-------------------|
| Average defect percentage | 0.03 %         | 5                 |
| Density, ISO3369          | Result         | Number of samples |
| Average density           | min 8.15 g/cm3 | NA                |

The areal defect percentage was determined from cross-sections of built parts using an optical microscope fitted with a camera and analysis software. The analysis was carried out for sample area of  $15 \times 15$  mm. The defects were detected and analyzed with an image capture/analysis software with an automatic histogram based filtering procedure on monochrome images.



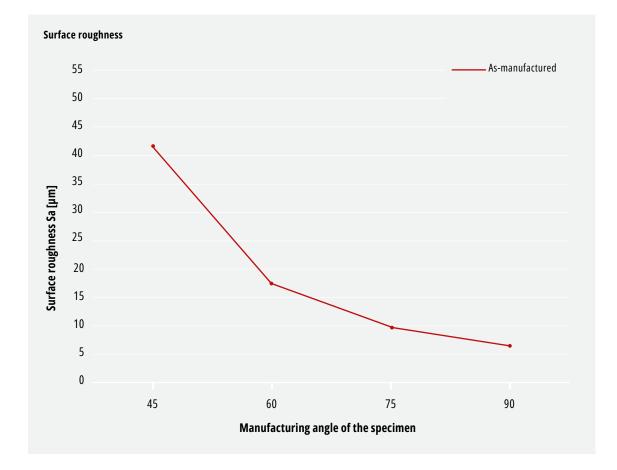

# **Mechanical Properties in Heat Treated State1**

# Tensile properties heat treated ISO6892-1

|            | Yield strength | Tensile strength | Elongation at break A [%] |
|------------|----------------|------------------|---------------------------|
|            | Rp0.2 [MPa]    | Rm [MPa]         |                           |
| Vertical   | 1 180          | 1 420            | 13                        |
| Horizontal | 1 270          | 1 530            | 14                        |

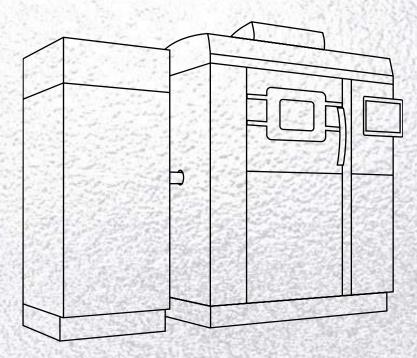
#### Hardness as per ISO 6507

| Hardness, HV      | 479 |
|-------------------|-----|
| Number of samples | 12  |




#### Tensile properties as manufactured

|            | Yield strength<br>Rp0.2 [MPa] | Tensile strength<br>Rm [MPa] | Elongation at break A [%] | Number<br>of samples |
|------------|-------------------------------|------------------------------|---------------------------|----------------------|
| Vertical   | 650                           | 990                          | 32                        | 7                    |
| Horizontal | 790                           | 1 080                        | 26                        | 4                    |


### Additional Data1





The surface quality was characterized by optical measurement method according to internal procedure. The 90 degree angle corresponds to vertical surface.





# EOS NickelAlloy IN718 for EOS M 290 | 80 μm HiPro

Process Information Heat Treatment Physical Part Properties Mechanical Properties Additional Data

### EOS NickelAlloy IN718 for EOS M 290 | 80µm HiPro Process Information

| System set-up         | EOS M 290                                        |  |
|-----------------------|--------------------------------------------------|--|
| EOS material set      | IN718 80 µm HiPro                                |  |
| EOSPAR name           | IN718_040_080_HiProM291_1xx                      |  |
| Software requirements | EOSPRINT 2.11 or newer<br>EOSYSTEM 2.15 or newer |  |
| Powder part no.       | 9011-0020                                        |  |
| Recoater blade        | EOS HSS Blade                                    |  |
| Nozzle                | EOS Grid Nozzle                                  |  |
| Inert gas             | Argon                                            |  |
| Sieve                 | 63 µm                                            |  |

#### Additional information

| Layer thickness     | 80 µm                  |
|---------------------|------------------------|
| Volume rate         | 8.2 mm <sup>3</sup> /s |
| Min. wall thickness | Typical 0.3 - 0.4 mm   |

#### **Heat Treatment**

Heat treatment procedure conform to Aerospace Material Specification AMS 2774 and AMS 5662. As manufactured microstructure for additively manufactured IN718 consists of gamma phase (γ). Heat treatment for IN718 is required to produce desired microstructure and part properties (gamma double prime precipitates, γ"). Heat treatment is also used to relieve stresses.

#### Step 1:


**Solution Annealing:** hold at 954 °C (1 750 °F ) for 1 hour per 25 mm (0.98 inch) of thickness, air (/argon) cool

#### Step 2:

**Ageing Treatment:** hold at 718 °C (1 325 °F ) 8 hours, furnace cool to 621 °C (1 150 °F ) and hold at 621 °C (1 150 °F ) for total precipitation time of 18 hours, air (/argon) cool

# **Chemical and Physical Properties of Parts1**





Heat treated microstructure. Etchant: Kalling's II

| Defects                   | Result         | Number of samples |  |
|---------------------------|----------------|-------------------|--|
| Average defect percentage | 0.02 %         |                   |  |
| Density, ISO3369          | Result         | Number of samples |  |
| Average density           | min 8.15 g/cm3 | NA                |  |

The areal defect percentage was determined from cross-sections of built parts using an optical microscope fitted with a camera and analysis software. The analysis was carried out for sample area of  $15 \times 15$  mm. The defects were detected and analyzed with an image capture/analysis software with an automatic histogram based filtering procedure on monochrome images.

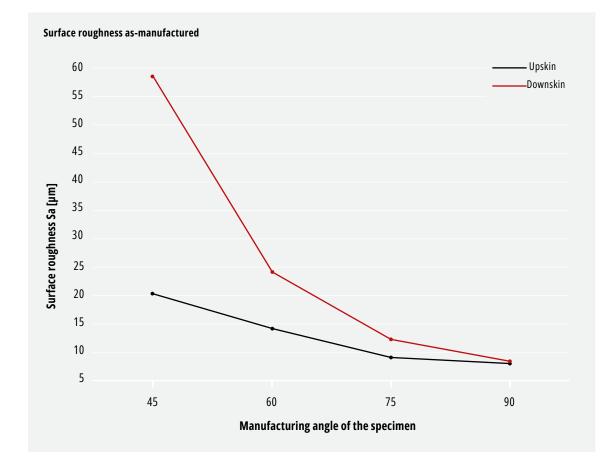



# **Mechanical Properties in Heat Treated State1**

| Tensile properties heat treat<br>ISO6892-1 | ed             |                  |                           |
|--------------------------------------------|----------------|------------------|---------------------------|
|                                            | Yield strength | Tensile strength | Elongation at break A [%] |
|                                            | Rp0.2 [MPa]    | Rm [MPa]         |                           |
| Vertical                                   | 1 200          | 1 440            | 15                        |
| Horizontal                                 | 1 240          | 1 500            | 14                        |

#### Hardness as per ISO 6507

| Hardness, HV      | 465 |  |
|-------------------|-----|--|
| Number of samples | 12  |  |




\* T90: Tolerance intervals provide lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferable to other systems.

| Tensile properties as | manufactured                  |                              |                           |                      |
|-----------------------|-------------------------------|------------------------------|---------------------------|----------------------|
|                       | Yield strength<br>Rp0.2 [MPa] | Tensile strength<br>Rm [MPa] | Elongation at break A [%] | Number<br>of samples |
| Vertical              | 660                           | 1 010                        | 32                        | 7                    |
| Horizontal            | 770                           | 1 070                        | 27                        | 5                    |

### Additional Data1





The surface quality was characterized by optical measurement method according to internal procedure. The 90 degree angle corresponds to vertical surface.

# IHR INDUSTRIEPARTNER FÜR ADDITIV GEFERTIGTE BAUTEILE

Wir «drucken» (3D Druck von Metall) Ihre Bauteile und liefern Ihnen diese inklusive der kompletten mechanischen Nacharbeit. Unser Fertigungsprozess garantiert eine hohe Qualität und Reproduzierbarkeit. Mit unserer Erfahrung unterstützen und beraten wir Sie gerne in der Konstruktion für den additiven Fertigungsprozess.

# ECOPARTS ADDITIVE METAL SOLUTIONS

ECOPARTS AG, ZÜRICHSTRASSE 62, 8340 HINWIL +41 55 260 18 00, INFO@ECOPARTS.CH WWW.ECOPARTS.CH